Advanced Math
6-5

(Day 2)
DeMoivre's Theorem

DeMoivre's Theorem :
if z is a complex number and # is a positive integer, then
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nth Roots of Complex Numbers :
For a positive integer n, the complex number z = r(cosf + i sind ) has
exactly n distinct roots given by

r ( cos O+ 2mk +n2nk + sin 22k +n2nk )

where k=0,1,2,...,n-1

I never really use this formula. I know that there will be the same
number of roots as the index. I divide the angle found with arctan()
by the index. Then I add 360°rn (index) and keep adding this angle
until all the roots are found. (See next slide.)

Find the following root:
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I know thattHere will be the same number of roots as
the index,” I divide the angle found with arctan() by the
index. Then I add 360°# (index) and keep adding this
angle until all the roots are found.
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Multiply these out to
oet the standard form.
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Assignment:
pg. 563
70-80 even,
89-100 all.




